ARV-471, an oral estrogen receptor PROTAC™ protein degrader for breast cancer

John J. Flanagan, Yimin Qian, Sheryl M. Gough, Monica Andreoli, Mark Bookbinder, Gregory Cadelina, John Bradley, Emma Rousseau, Julian Chandler, Ryan Willard, Jennifer Pizzano, Craig M. Crews, Andrew P. Crew, Ian Taylor, and John Houston

SABCS, Dec 4-8, 2018

Abstract

ARV-471, an estrogen receptor (ER) alpha PROTAC™ protein degrader, is a hetero-bifunctional molecule that facilitates the interactions between estrogen receptor alpha and an intracellular E3 ligase complex, leading to the ubiquitination and subsequent degradation of estrogen receptors via the proteasome. ARV-471 robustly degrades ER in ER-positive breast cancer cell lines with a high-maximal degradation concentration (DC50) of ~1 nM. PROTAC-mediated ER degradation decreases the expression of classically-regulated ER-target genes and inhibits cell proliferation of ER-dependent cell lines (MCF7, T47D). Additionally, ARV-471 degrades clinically-relevant ESR1 variants (Y537S and D538G) and inhibits growth of cell lines expressing those variants. In an immature rat uterotrophic model, ARV-471 decreases uterine ER and demonstrates no agonist activity. Daily, oral administration of single agent ARV-471 (3, 10, and 30 mpk) leads to significant anti-tumor activity of estradiol-dependent MCF7 xenografts and concomitant tumor ER protein reductions of >80% at study termination. Moreover, when a CDK4/6 inhibitor is combined with ARV-471 in the MCF7 model, even more pronounced tumor growth inhibition is observed (131% TGI), accompanied by significant reductions in ER protein levels. In an ESR1 Y537S, hormone-independent patient-derived xenograft model, ARV-471 at 10 mpk completely inhibited growth and also significantly reduced mutant ER protein levels. Taken together, the preclinical data of ARV-471 supports its continued development as a best-in-class oral ER PROTAC™ protein degrader.

In vivo activity of ARV-471

ARV-471 is a potent ERα degrader

In vivo efficacy with ARV-471 in various ERα-dependent models

Summary

• Orally-bioavailable ARV-471 demonstrates single-digit nanomolar ERα degradation potency in wild-type and variant ERα-expressing cell lines
• ARV-471 displays no agonist activity in rodent uterine tissue
• Oral administration of ARV-471 provides more robust tumor growth inhibition and ERα degradation compared to fulvestrant in an orthotopic MCF7/estradiol xenograft model
• Combination of ARV-471 and CDK4/6 inhibitor palbociclib results in significant tumor regressions and overall superior anti-tumor activity when compared to fulvestrant and palbociclib combination
• ARV-471 inhibits growth of tamoxifen-resistant and ESR1 (Y537S) tumors while also reducing tumor ERα levels
• ARV-471 is currently being developed as a best-in-class, orally-bioavailable ERα degrader

This presentation is the intellectual property of the author/presenter. Contact John.Flanagan@arvinas.com for permission to print and/or distribute.