DEVELOPMENT OF POTENT, ORALLY BIOAVAILABLE PROTAC® LRRK2 DEGRADER MOLECULES AS POTENTIAL DISEASE MODIFYING THERAPEUTICS FOR NEURODEGENERATION

June 21, 2024

Kaela Kelly, PhD Senior Research Scientist, Neuroscience, Arvinas, Inc. Biennial International LRRK2 Meeting

Arvinas Confidential and Proprietary

PROTAC[®] protein degraders combine the benefits of small molecules and gene-based knockdown technologies

Arvinas' PROteolysis-TArgeting Chimera (PROTAC®) degraders can:

- Eliminate disease-causing proteins (rather than inhibit)
- Disrupt scaffolding functions of target proteins
- Bind and degrade classically "undruggable" proteins
- Act iteratively (catalytically)
- Potential for oral delivery and achieve broad tissue distribution, including across the bloodbrain-barrier

Arvinas neuroscience pipeline addressing areas of tremendous unmet need in neurodegenerative diseases

> 6 million

patients in the U.S. are diagnosed with Alzheimer's, Parkinson's, or Huntington's diseases alone[†]

- Opportunity for PROTAC[®] protein degraders:
- Very few disease-modifying therapies exist
- Blood-brain barrier penetration is a challenge for other modalities
- Other potential therapies have difficult routes of administration, e.g., intra-thecal

Arvinas Neuroscience Pipeline

PROTAC[®] protein degraders have the potential to change the treatment paradigm in neurodegenerative diseases

- Potential to cross the blood brain barrier and degrade disease-causing proteins inside cells
- Specifically target pathogenic proteins in the brain
- Potential for oral therapies

Phase 1 trial with PROTAC[®] LRRK2 degrader ARV-102 initiated Feb 2024

[†]Global data, DecisionResources.

mHTT, mutant Huntingtin protein; MSA, multiple systems atrophy; PSP, progressive supranuclear palsy; LRRK2, Leucine-rich repeat kinase 2

PROTAC®-induced LRRK2 degradation as a potential treatment for idiopathic Parkinson's disease and progressive Supranuclear Palsy

Human genetics and biology create a strong rationale for differential biology of PROTAC® LRRK2 degraders

LRRK2 is a large multidomain scaffolding kinase

- Parkinson's Disease (PD) has a diagnosed prevalence of ~1M in the US, with more than 10M worldwide¹
 - No approved disease-modifying therapies for PD
 - Familial mutations and sporadic variants implicate LRRK2 in PD ('breaks on lysosome clearance')
- Progressive Supranuclear Palsy (PSP) is a pure tauopathy with rapid progression to death within 5-7 years
 - No approved therapies for PSP
 - Genetic variants in the LRRK2 locus associated with accelerated progression time to death
- LRRK2 kinase inhibitors and an ASO in clinical trials

Mutations in and increased expression of LRRK2

LRRK2, Leucine-rich repeat kinase 2; ASO, antisense oligonucleotide

¹ Parkinson's Foundation. Who has Parkinson's? https://www.parkinson.org/understanding-parkinsons/statistics, accessed 01/06/24

PROTAC[®] induces degradation of LRRK2 in in human PBMCs, impacts phospho-RAB pathway, and is on mechanism

PROTAC[®] LRRK2 degradation aligns with effects on target & pathway engagement in vitro

Single oral LRRK2 PROTAC[®] administration rapidly degrades target in mouse brain (concentration-dependent and durable)

LRRK2 PROTAC[®] Optimization Dose-Response PK/PD in Cortex 24h post dose 150 (% CTL) ROTAC-A- 5.2 nM DC₅₀ 100 PROTAC-B- 70 nM DC₅₀ Degradation 50· 0--9.0 -8.5 -8.0 -7.5 -7.0 -6.5 [PROTAC] Brain, M *PK/PD- Pharmacokinetic and Pharmacodynamic effect relationship

LRRK2 Degradation [PROTAC]_{brain} 100 PROTAC Exposure, LRRK2 (%Veh) 75-50-25lloq Ζ 0 10 15 Time (days)

LRRK2 PROTAC[®] Time-Course - Cortex

6

PROTAC[®] LRRK2 degrader shows better target engagement, enhanced potency and pathway engagement versus a LRRK2 inhibitor in G2019S KI mice

^a G2019S familial Parkinson's Disease mouse model LRRK2, Leucine-rich repeat kinase 2 Data presented at 2023 Keystone Summit: Autophagy and Neurodegeneration

PROTAC® LRRK2 degrader induced less severe Type II pneumocyte enlargement in mice despite full target engagement

LRRK2 Degradation/ Target Engagement

LRRK2 Kinase Inhibition/ Target Engagement

Lung Type II Pneumocyte Enlargement/ Hypertrophy (Histopathologic Score)

- Expected lung phenotype observed with LRRK2 PROTAC and kinase inhibitor MLi2 (positive control for type II pneumocyte enlargement)
- Effect is reversible after 14-day wash-out
- No evidence of collagen deposition in lung with LRRK2 PROTAC[®] degraders in primate (tox studies to date)

Surfactant protein accumulation in mouse lung observed with LRRK2 kinase inhibitor MLi2, but not PROTAC[®] degrader

Arvinas' oral PROTAC[®] LRRK2 degrades LRRK2 in multiple deep anatomic brain regions in non-human primates

Our LRRK2 degrader induces biomarker changes that reinforce confidence in the PROTAC[®] mechanism of action in the brain and periphery

PROTAC[®]-induced reductions observed in key lysosomal marker in cynomolgus monkey

BMP reductions in cynomolgus monkeys

BMP levels were measured by UPLC-MS/MS and normalized to creatinine and then expressed relative to baseline.

PK/PD of LRRK2 reduction in cortex and CSF following oral dosing in cynos

CSF LRRK2 reductions in cynomolgus monkeys; surrogate compartment for brain

Equivalent PK/PD supports the utility of measuring CSF LRRK2 as a surrogate for monitoring LRRK2 reductions in the brain.

LRRK2, Leucine-rich repeat kinase 2; PK/PD, pharmacokinetic-pharmacodynamic; CSF, cerebrospinal fluid; BMP, Bis(monoacylglycerol)phosphate: a lysosomal lipid Data presented at 2024 Keystone Summit: Targeted Protein Degradation

PROTAC® protein degraders have the potential to change the treatment paradigm in neurodegenerative diseases

ARVINAS

Preclinically, PROTAC[®] LRRK2 degraders:

- Achieve potent, selective, and durable target engagement in brain following oral dosing
- Show better target engagement, enhanced potency and pathway engagement compared to inhibitors
- Induce less severe type 2 pneumocyte enlargement and there's no accumulation of surfactant protein C, compared to MLi2
- Impact clinically relevant biomarkers in primates

Arvinas Neuroscience Pipeline

- Potential to cross the blood brain barrier and degrade disease-causing proteins inside cells
- Specifically target pathogenic proteins in the brain
- Potential for oral therapies

Phase 1 trial with PROTAC[®] LRRK2 degrader ARV-102 initiated Feb 2024

Thank you - Team Arvinas!

