ARVINAS

Discovery of oral PROTAC LRRK2 degraders as potential treatments for neurodegenerative disorders

Angela Cacace, PhD Chief Scientific Officer, Arvinas, Inc.

MJFF Conference, 2024

PROTAC Protein Degraders Combine the Benefits of Small Molecules and Gene-Based Knockdown Technologies to Eliminate Disease-Causing Proteins ARVINAS

Our investigational PROTAC LRRK2 degrader, ARV-102, is currently being tested for safety and effects on LRRK2 levels and activity in healthy volunteers.

Arvinas' Neuroscience Exemplifies Our Commitment to Address Tremendous Unmet Need in Parkinson's and Related Diseases

- Environmental exposures
- Aging
- Molecular / cellular events (e.g. 'breaks' on lysosomal clearance, mitochondrial dysfunction, neuroinflammation, etc.)

Survival of individuals with PSP is significantly worse than individuals affected with idiopathic PD

Differences between PSP and PD:

- PSP worsens quickly, severe disability within 3-5 years post initial symptoms
- PSP-forward leaning posture, fixed gaze, and reduced sense of smell
- Lack of response to levodopa in PSP
- PD is also a synucleinopathy

PROTAC-Induced LRRK2 Degradation is being Researched as a Potential Treatment for Idiopathic Parkinson's Disease and Progressive Supranuclear Palsy ARVINAS

Human genetics and biology create a strong rationale for differential biology of PROTAC LRRK2 degraders

Progressive supranuclear palsy (PSP) is a pure tauopathy with rapid progression to death within 5-7 years

- Data linking increased LRRK2 activity and Tau secretion and/or tau mediated neurotoxicity
- LRRK2 genetic variants associated with accelerated progression time to death

Parkinson's disease (PD) is the second-largest tauopathy

- No approved disease-modifying therapies for PD
- Familial mutations & sporadic variants implicate LRRK2 in PD and are associated with tau pathology—G2019S LRRK2 enhances the neuronal transmission of tau
- LRRK2 is a large multidomain scaffolding kinase contributing to pathology in the disease (*breaks on lysosomal clearance*)
- Protective PD variant and preclinical animal model data suggest that reduction of 50% of LRRK2 protein may impact pathology and dysfunction in PD

LRRK2 kinase inhibitors and an ASO in clinical trials

LRRK2 mutations increasingly associated with diverse pathologies in PD and PSP

Wang, et al., 2021, Zhao, et al., 2017, Henderson, et al., 2019, Zheng, et al., 2022; Herbst, et al., 2022; Castro-Sanchez, et al., 2020)

PROTAC-Induced LRRK2 Degradation has the Potential to Differentiate From Kinase Inhibition

LRRK2 is a large multidomain scaffolding kinase

Target and pathway engagement measures

- Kinase inhibitor engagement is measured by phosphorylation of amino acid 935 (pS935)
- PROTAC engagement is measured by total LRRK2 protein levels
- Pathway engagement is measured by phosphorylation of Rab GTPases (pRAB) that put the brakes on the lysosome

LRRK2, Leucine-rich repeat kinase 2; ASO, antisense oligonucleotide

1. Parkinson's Foundation. Who has Parkinson's? https://www.parkinson.org/understanding-parkinsons/statistics, accessed 01/06/24; Gregory et al., 2024

LRRK2 PROTAC key differentiators

Investigational PROTAC protein degrader ARV-102 Induces LRRK2 Degradation and Lysosomal Pathway Engagement

LRRK2, Leucine-rich repeat kinase 2; iPSC, induced pluripotent stem cells; Data presented at 2024 Keystone Summit: Targeted Protein Degradation; E3i- PROTAC with Chemically inactivated E3 binder; DC50 =half-maximal degradation concentration that makes a protein for 50% degradation; Dmax= maximal % reduction of a protein

6

Oral ARV-102 LRRK2 Degrader Shows Better Target Engagement, Enhanced Potency and Pathway Engagement Versus a LRRK2 Kinase Inhibitor

Iterative PROTAC degradation results in stronger LRRK2 and downstream pRAB pathway engagement versus LRRK2 kinase inhibitor in the brain^a

ARV-102 Increases Lysosome Functional Degradative Capacity and Number in cells

Lysosome function and number are reduced in PD patients^a and models. ARV-102 dose-dependently increased degradation efficiency and number compared to kinase inhibitors

LRRK2, Leucine-rich repeat kinase 2; PD, Parkinson's disease

KO, genetic knock out; DQ-BSA, Dye Quenched-Bovine Serum Albumin

- Mutant familial PD and increased LRRK2 expression 'puts the brakes' on lysosomal clearance system.
- Autophagy (clearance dependent on lysosome) is reduced with increased LRRK2 expression, LRRK2 familial mutation (G2019S), and LRRK2 activity/levels in rodent neurons^b
- LRRK2 PROTAC activity is consistent with literature showing an increase in lysotracker spot count observed in LRRK2 KO astrocytes^c

a. Dehey et al., 2013. Lysosomal impairment in Parkinson's disease; b. R. Wallings et al., 2019; c. Henry et al., 2015

Data presented at 2023 Keystone Summit: Autophagy and Neurodegeneration; Figure: Marwaha and Sharma, Bio-protocol, 2017

In Vitro and *In Vivo* Data Indicate that LRRK2 PROTAC Degraders Induce Reduction of Pathologic Tau

SNP, single nucleotide polymorphism †Jabbari et al., 2021

Oral ARV-102 LRRK2 Degrader Reaches Multiple "Deep Brain" Regions in Non Human Primates (NHPs) and Degrades LRRK2

....

10

LRRK2, leucine-rich repeat kinase 2; mpk, milligrams per kilogram; Figure adapted from Beuriat et al. 2022

Oral ARV-102 Crosses the Blood-Brain Barrier and Reduces CSF LRRK2 levels in NHPs

*Human CSF LRRK2 levels in healthy volunteers range from 5 – 104 pg/mL, averaging 32 pg/mL. The average in LRRK2+PD+ is 68 pg/mL ~2 fold elevated LRRK2 levels.

Oral Dosing of ARV-102 Induced Reductions in Bis-Monoacylglycero Phosphate (BMP) Lysosomal Biomarker in NHP in Both Urine and in CSF

Putative LRRK2-Dependent Protein Pathway Biomarker Discovery Utilizing PPMI and LRRK2 PROTAC Degrader Treated NHP Cerebral Spinal Fluid

Global analysis of SomaScan data from ported NHP CSF study

Identified proteins enriched in pathways related to **neuroinflammatory response and lysosomal function** Group comparisons to PPMI baseline human CSF SomaScan data

Parkinson's Progression Markers Initiative

ARVINAS

••••

Cohort	Ν
Healthy Controls	183
Idiopathic PD	393
PD+ / LRRK2+	149
PD- / LRRK2+	178

SomaScan-Identified LRRK2 Protein Pathway Biomarkers that Concord with LRRK2 Protein Levels in NHP CSF

14

* Human CSF LRRK2 levels in HVs range from 5 – 104 pg/mL, with an average of 32 pg/mL. Average in LRRK2+PD+ is 68 pg/mL.

IBA1 is a microglia marker, also known as "Allograft Inflammatory Factor 1" (AIF-1); GPNMB or transmembrane glycoprotein NMB (GPNMB) was identified as a "Damage-Associated Microglia" (DAM) neurodegeneration protein a. B Phillips, 2023; *Mabrouk, 2020

CSF LRRK2 Pathway Biomarkers Exhibited Unprecedented Reductions in NHPs Following a Single Oral Dose of ARV-102 LRRK2 PROTAC Degrader

15

PD-PPMI SomaScan markers that are associated with LRRK2 pathway/genetics are reduced in NHP CSF following a single oral dose of ARV-102

Opportunity to further explore LRRK2-dependent biomarkers in PD

PROTAC Protein Degraders have the Potential for a New Transformational Therapeutic Approach to Neurodegenerative Diseases

Preclinically, oral ARV-102 PROTAC LRRK2 degrader:

- Achieves potent, selective, and durable target engagement in the brain following oral dosing
- Shows better target engagement, enhanced potency, and pathway engagement compared to kinase inhibitors
- Induces less severe type 2 pneumocyte enlargement without accumulation of surfactant protein C, compared to MLi2. No collagen deposition to date. (data not shown)
- Oral ARV-102, crosses the BBB and impacts clinically relevant LRRK2-dependent biomarkers in the CNS of NHPs.

Arvinas neuroscience pipeline

- Potential to cross the blood brain barrier and degrade diseasecausing proteins inside cells
- Specifically target pathogenic proteins in the brain
- Potential for oral therapies

Investigational PROTAC protein degrader ARV-102 is the first PROTAC LRRK2 degrader to demonstrate potential in addressing neurodegenerative diseases. Our pre-clinical research findings support future evaluation of ARV-102 in patients with Parkinson's disease or PSP.

Singularly focused on developing a new class of medicines that transform patient lives and challenging the perceived limits of drug discovery.

ARVINAS